Digital to Mixed-Signal Verification of Power Management SOCs Using Questa-ADMS

M. Behaghel
A global leader in wireless technologies

Leading supplier of platforms and semiconductors for wireless devices

Fabless company supported by extensive semiconductor manufacturing experience and telecom heritage

Truly global with a workforce of more than 85% of employees in R&D
Investing to win

- True multimode RF
- Architecture & System level power design

- Partnership with STMicroelectronics
- Latest ARM cores
- Optimized process technologies
- Aggressive nodes

- 40nm Combos
- Integrated
- Interoperability

- Multi-core architectures
- Low power consumption

- Power management and RF

- 3D Graphics, HD video, audio, imaging

- 2G, EDGE, WCDMA, TD-SCDMA, HSPA, HSPA+, LTE

- GPS, Bluetooth, HDMI, Wi-Fi, USB, FM

- Open OS, Frameworks

- Leading GPU
- Power-optimized multimedia
- Lowest power audio

A complete portfolio with multimode modems, flexible and scalable solutions

Complete platforms
Outline

- AMS/RF Verification: what is the best tradeoff
- Modeling
- Netlisting Tips: How to fit analog specificities in a digital mold
- Verification of the electrical behavior
- Results
AMS/RF Verification

What methodology should we choose?
AMS/RF design simulation needs
Complexity of AMS/RF verification

- Verification of Top Digital SOCs:
 - Proven methods/techniques to check integration, functionality,…
 - Done in specific verification teams
- For AMS/RF, designs are smaller but there are extra needs
 - Who does the verification? Do they have analog or digital background?
 - Analog and digital worlds are very different. How do they understand each others needs, language?
 - Who does the top level assembly (analog design based on a schematic)
 - Need to generate a netlist derived from this schematic
 - Netlister needs to take into account analog/digital blocks
 - How do I simulate the digital with the analog parts?
 - How can I make the best trade off between speed and accuracy?
 - Electrical functionality: how will the design behave electrically?
 - Interaction of blocks together
 - External Loads
 - How should results be managed?
 - Digital : simulation times very short. Can be rerun if questions
 - Analog/mixed : long simulation times + multiple configurations for the same stimulus
 - Other questions:
 - Will there be a verification of the IC at platform level?…
- **The Verification methodology should be the best tradeoff for all of these questions.**
Example of a functionality in an AMS power management design

- **Supply1**
- **Reference**
- **TempSensor**
- **ADC**
- **Digital**
- **Supply2**
- **cell1**
What do we want to check in a design?

Type of errors

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection errors – wrong signals – wrong power domain</td>
<td></td>
</tr>
<tr>
<td>Incorrect buss wires connected</td>
<td></td>
</tr>
<tr>
<td>Incorrect register bits used</td>
<td></td>
</tr>
<tr>
<td>Misunderstood interface specs – functional issue mismatch</td>
<td></td>
</tr>
<tr>
<td>Clock phase-frequency mismatch</td>
<td></td>
</tr>
<tr>
<td>Communication / activity during power down.</td>
<td></td>
</tr>
<tr>
<td>Delay timing issues. Signals arriving a cycle or two late</td>
<td></td>
</tr>
<tr>
<td>Bias mismatch</td>
<td></td>
</tr>
<tr>
<td>Current overconsumption</td>
<td></td>
</tr>
<tr>
<td>Stability of IP with a real supply especially in startup phases</td>
<td></td>
</tr>
<tr>
<td>Electrical behavior like: rise/fall time, loading effects,.....?</td>
<td></td>
</tr>
<tr>
<td>Bias mismatch</td>
<td></td>
</tr>
<tr>
<td>Current leakage</td>
<td></td>
</tr>
<tr>
<td>Missing level shifter</td>
<td></td>
</tr>
<tr>
<td>Floating gate</td>
<td></td>
</tr>
<tr>
<td>IP performance, characterization</td>
<td></td>
</tr>
</tbody>
</table>
Simulation flows available today

- Analog SPICE
- Fast SPICE Co-simulations
- Mixed AoT Simulations (VHDL-AMS)
- Mixed DoT Simulations
- Full Digital
Flow Coverage

<table>
<thead>
<tr>
<th>Type of errors</th>
<th>VHDL-AMS simulations</th>
<th>VHDL-RN simulations</th>
<th>DoT Mixed simulations</th>
<th>Fast-Spice co-simulation</th>
<th>Spice simulation</th>
<th>ERC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection errors – wrong signals – wrong power domain</td>
<td>●●</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Incorrect buss wires connected e.g. bit 3, 5, 7 instead of 2, 4, 6</td>
<td>●●</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Incorrect register bits used</td>
<td>●●</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Misunderstood interface specs – functional issue mismatch</td>
<td>●●</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Clock phase-frequency mismatch</td>
<td>●●</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Communication / activity during power down.</td>
<td>●●</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Delay timing issues. Signals arriving a cycle or two late</td>
<td>●●</td>
<td>●</td>
<td>●●</td>
<td>●●</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>Bias mismatch</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>Current overconsumption</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>Stability of IP with a real supply especially in startup phases</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>Electrical performances like: rise/fall time, loading effects,…..?</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>Current leakage</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>Missing level shifter</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>Floating gate</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>IP performance, caracterisation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●●</td>
<td></td>
</tr>
</tbody>
</table>
Modeling
Modeling: Why do we need models?

- To simulate analog behavior with digital blocks
- To speed up simulations (clocked blocks)
- To do verification in top down approach:
 - not all of the functionality is implemented yet
- Check states that IPs are not intended for:
 - Connectivity
 - Power Domain
 - Biasing
Modeling: What is in a model?

- Checks
 - Power supplies/Grounds
 - Biasing (N/P) + value
 - Clock frequency
 - Connection checks

- Basic functionality
 - For top simulations, the functionality should be a compromise between speed and accuracy.

- Example:

```plaintext
s_target <= (VPOS - GND) + (VDIG_NN - GND);

VOUT <= VPOS WHEN to_X01(BYPASS)='1'
  ELSE 0.0 AFTER g_tfall WHEN s_enable_global=FALSE
  ELSE 0.0 AFTER g_tfall WHEN to_X01(EN)=0'
  ELSE s_target AFTER g_trise;
```
Modeling: Behavior should be a compromise between speed and accuracy
Our choice: Use VHDL-RN models to represent the analog behaviour
VHDLRN Modeling Methodology: VHDL+Real numbers package

- Digital pins: type STD_LOGIC
 - Can be plugged directly to digital blocks
 - Directions: IN, OUT, INOUT

- ANALOG pins: custom resolved type RREAL
 - Currents and voltages are treated in the same manner
 - 10.0e-6 for currents and 1.2 for voltage for example.
 - Currents: + if going to a ground / - if going to a supply
 - User-defined high impedance value: -10.0
 - Initial values: -10.0

- Netlist: VHDL-RN

Simulations are very fast

No electrical effects. Requires more electrical (fast spice/mixed) simulations

All analog cell need to be modeled
Resolution function

- Resolution if value inferior to 1.0e-3 (Current): SUM
- Resolution if value superior to 1.0e-3 (Voltage): AVERAGE
- High Impedence not taken into account: -10.0 ignored
- Possibility to have non controlled inouts
Netlisting Tips

How to fit analog specificities in a digital mold
Netlisting: Analog specificities

- Our designs are analog on top. We need to generate a netlist of the design
- Several problems:
 - How can we deal with analog instances that are left on top?
 - How can we connect types RREAL to STD_LOGIC?
 - How can we deal with INOUTs
 - How can we deal with pullup/pulldown, 1 wire communications…
 - How to check supplies on a digital block?
Netlisting: Analog devices

- In VHDL-RN methodology, all components must have a model
 - Capacitors and Diodes can be removed from the netlist
 - A resistor can be shorted
 - A resistor bridge must be modeled
Netlisting: Type conversion functions

- Conversion functions are defined in the package \((\text{real2stdlogic} \text{ and } \text{stdlogic2real})\)

- They will be inserted automatically by the netlistser

```vhdl
MYINST : MYCELL
Port map(
    PORT1 => NET1,
    PORT2 => real2stdlogic(Net2)
);
```
All items not covered by digital verification

<table>
<thead>
<tr>
<th>Type of errors</th>
<th>VHDL-AMS simulations</th>
<th>VHDL-RN simulations</th>
<th>DoT Mixed simulations</th>
<th>Fast-Spice co-simulation</th>
<th>Spice simulation</th>
<th>ERC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection errors – wrong signals – wrong power domain</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Incorrect buss wires connected e.g. bit 3, 5, 7 instead of 2, 4, 6</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Incorrect register bits used</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Misunderstood interface specs – functional issue mismatch</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Clock phase-frequency mismatch</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Communication / activity during power down.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Delay timing issues. Signals arriving a cycle or two late</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Bias mismatch</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Current overconsumption</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Stability of IP with a real supply especially in startup phases</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Electrical performances like: rise/fall time, loading effects,…..?</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Current leakage</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Missing level shifter</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Floating gate</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IP performance, caracterisation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Verification of Electrical Behavior
Mixed simulation for Macrocells Needs

- Complement the Digital on top simulations with mixed simulations
 - Top simulations are based on models: they do not cover analog effects
 - Need: Simulate the spice behavior of the macrocell in the top environment.
 - Power-up, power-down: supply stability
 - Interfaces with other blocks: control currents and voltages, rising time, gain, settling time
 - Behavior of the block with a top stimuli

- Simulation characteristics:
 - Transient simulations
 - Some simulations can have loops between analog and digital
Questa ADMS Platform

DAC 2012 - Questa ADMS Suite Session
From digital to mixed simulations

1. Run and optimize the pure digital simulation inside Questa ADMS as a sanity check

2. Create the mixed configuration
 - Converters
 - Simulation characteristics
 - Simulator command file
 - Spice netlists for blocs to be simulated in analog

3. Run the mixed simulation
Example of a mixed functionality

![Diagram of mixed functionality](image-url)
Automatic converter insertion

- Converters are inserted automatically between 2 types:

<table>
<thead>
<tr>
<th></th>
<th>Digital \rightarrow Electrical</th>
<th>Electrical \rightarrow Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD_LOGIC</td>
<td>D2A_VOLTAGE_STD_LOGIC VHI=1.8; VLO=0.0</td>
<td>A2D_VOLTAGE_STD_LOGIC VTH1=0.6; VTH2=1.2</td>
</tr>
<tr>
<td>RREAL</td>
<td>D2A_VOLTAGE_REAL D2A_CURRENT_REAL</td>
<td>A2D_VOLTAGE_REAL A2D_CURRENT_REAL</td>
</tr>
</tbody>
</table>

- But the default value may not always be correct:
 - VOLTAGE/CURRENT converters
 - Parameters: It may be necessary to change the supply value for digital signals:
 - D2A_VOLTAGE_STD_LOGIC: ‘1’ \rightarrow VLO=0.0, VHI=1.2
Converters for electrical \rightarrow VHDLRN conversion

Diagram: ELECTRICAL \rightarrow REAL

- **T_IN**
 - V_{T_IN}
 - 1.2
 - Δ_Y
 - 0.0
 - $1.2-\Delta_Y$
 - 0.0

- **S_OUT**
 - $S_OUT\.value$
 - Δ_X

Flow:
- SPICE \rightarrow ELECTRICAL \rightarrow REAL \rightarrow DIGITAL
Results

Testcases run on a power management SoC
Case 1: IC startup

- Instances generating the mandatory startup powers and controls are simulated in analog description: SUPPLY1 regulator, REFERENCE, MONITORING, etc...

- Analog content: 12k devices, 5k nodes
Case 1: IC startup - Configuration setup

Table:

<table>
<thead>
<tr>
<th>NAME</th>
<th>DIR</th>
<th>TYPE</th>
<th>CONVERTER</th>
<th>SOURCE</th>
<th>PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNDAVSS</td>
<td>IN</td>
<td>real</td>
<td>D2A_VOLTAGE_RREAL</td>
<td>VOLTAGE</td>
<td>trise=1.0e-9,tfall=1.0e-9</td>
</tr>
<tr>
<td>GNDESD</td>
<td>IN</td>
<td>real</td>
<td>D2A_VOLTAGE_RREAL</td>
<td>VOLTAGE</td>
<td>trise=1.0e-9,tfall=1.0e-9</td>
</tr>
<tr>
<td>GNDDPD</td>
<td>IN</td>
<td>real</td>
<td>D2A_VOLTAGE_RREAL</td>
<td>VOLTAGE</td>
<td>trise=1.0e-9,tfall=1.0e-9</td>
</tr>
<tr>
<td>GNDDPV</td>
<td>IN</td>
<td>real</td>
<td>D2A_VOLTAGE_RREAL</td>
<td>VOLTAGE</td>
<td>trise=1.0e-9,tfall=1.0e-9</td>
</tr>
<tr>
<td>i_res_100n</td>
<td>IN</td>
<td>real</td>
<td>D2A_CURRENT_RREAL</td>
<td>CURRENT</td>
<td>rise=1.0e-9,tfall=1.0e-9</td>
</tr>
<tr>
<td>i_res_11u</td>
<td>IN</td>
<td>real</td>
<td>D2A_CURRENT_RREAL</td>
<td>CURRENT</td>
<td>rise=1.0e-9,tfall=1.0e-9</td>
</tr>
</tbody>
</table>

Diagram:

[Diagram showing instance and cell configurations]
Case 1: IC Startup - Results

- Fast simulation in top level context
 - > sanity checks that can be run often
 - > enhances confidence in top level behavior

- CPU time: 15min Questa ADMS Premier 4CPU

- Allows to track bugs that could be missed otherwise
 - > found 4 diodes inserted in reverse on the main reference voltage (on the encapsulation of the IP, so standalone IP simulation could not see it)
 - > critical bug highly impacting startup behavior detected during simulation
Case 2: Macrocell validation: GPADC

- Same configuration as default startup + all instances generating power for the GPADC are in spice (VPLUS2, REFERENCE2) + the GPADC

- Validation of the analog behavior with its digital connections
 - controls coming from the main digital core
 - feedback sent to the main digital core
 - validation of the IP encapsulation (level-shifters, analog feedbacks, …)

- Analog content: 22k devices, 11k nodes
Case 2: Macrocell validation: GPADC: Results

- CPU time: 3h15 Questa ADMS Premier 8CPU

- Allows to track bugs that could be missed otherwise
 - found a misalignment in between the digital core and the IP around the DATAREADY behavior, which caused that the GPADC had 50% of failure on conversion requests!
 - impossible to detect during standalone IP simulation as the controls are generated by the designer
 - very unlikely to detect during model vs schematic simulation as well, as controls are usually reused from the standalone IP simulation
 - a critical bug highly impacting the GPADC main behavior detected during simulation
Conclusion: Interest of Digital on Top mixed flow

- Full digital simulations very fast for connectivity and functionality verifications
 - Accuracy depends on model accuracy
- Stimuli is the same as a full digital stimuli:
 - Simulation can be prepared and optimized in digital
 - The same regression procedures can be used
- Possible to switch spice blocks very low in the hierarchy
- Possible to use spice or fast spice simulators
- Simulations can be done early (does not need spice netlist for all blocks)

- A good solution to see details in a design with the accuracy of a spice simulator
Conclusion: choose the best solution for each problem

<table>
<thead>
<tr>
<th>Type of errors</th>
<th>VHDL-AMS simulations</th>
<th>VHDL-RN simulations</th>
<th>DoT Mixed simulations</th>
<th>Fast-Spice co-simulation</th>
<th>Spice simulation</th>
<th>ERC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection errors – wrong signals – wrong power domain</td>
<td>●</td>
<td>★★★★</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Incorrect buss wires connected e.g. bit 3, 5, 7 instead of 2, 4, 6</td>
<td>●</td>
<td>★★★★</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Incorrect register bits used</td>
<td>●</td>
<td>★★★★</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Misunderstood interface specs – functional issue mismatch</td>
<td>●</td>
<td>★★★★</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Clock phase-frequency mismatch</td>
<td>●</td>
<td>★★★★</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Communication / activity during power down.</td>
<td>●</td>
<td>★★★★</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Delay timing issues. Signals arriving a cycle or two late</td>
<td>●</td>
<td>●</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
</tr>
<tr>
<td>Bias mismatch</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
</tr>
<tr>
<td>Current overconsumption</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
</tr>
<tr>
<td>Stability of IP with a real supply especially in startup phases</td>
<td>●</td>
<td>●</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
</tr>
<tr>
<td>Electrical performances like: rise/fall time, loading effects, …</td>
<td>●</td>
<td>●</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
</tr>
<tr>
<td>Current leakage</td>
<td>●</td>
<td>●</td>
<td></td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
</tr>
<tr>
<td>Missing level shifter</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>★★★★</td>
<td></td>
</tr>
<tr>
<td>Floating gate</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>★★★★</td>
<td></td>
</tr>
<tr>
<td>IP performance, caracterisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>★★★★</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER

© Copyright ST-Ericsson, 2009. All Rights Reserved.

The contents of this document are subject to change without prior notice. ST-Ericsson makes no representation or warranty of any nature whatsoever (neither expressed nor implied) with respect to the matters addressed in this document, including but not limited to warranties of merchantability or fitness for a particular purpose, interpretability or interoperability or, against infringement of third party intellectual property rights, and in no event shall ST-Ericsson be liable to any party for any direct, indirect, incidental and or consequential damages and or loss whatsoever (including but not limited to monetary losses or loss of data), that might arise from the use of this document or the information in it.

ST-Ericsson and the ST-Ericsson logo are trademarks of the ST-Ericsson group of companies or used under a license from STMicroelectronics NV or Telefonaktiebolaget LM Ericsson.

All other names are the property of their respective owners.

For more information on ST-Ericsson, visit www.stericsson.com
THANK YOU