Does ESL have a role in Verification?

Nick Gatherer
Engineering Manager
Processor Division
ARM
Key Trends

A typical verification challenge ...
big.LITTLE heterogeneous multicore

- Increasing complexity
- Increasing SW content
 - Multiple OSs
 - Secure services
- Higher performance, lower power
- Decreasing cost and time to market

Are we building the thing right?
Are we building the right thing?
Pillars of Verification Productivity

Contributors to Productivity Improvement

Tools & Methods
- Tool perf, capacity, & usability
- Advanced Methods
 - Constrained random
 - ABV
 - Formal
 - Coverage
- Verif. Platforms
 - RTL, FPGA, Emulation

Re-Use
- IP Re-use
 - Internal & 3rd party
- vIP
- Protocol checkers

Verification Stds
- PSL/SVA
- VMM/OVM/UVM

Abstraction
- Improved clarity
- Minimal impl. detail
- Efficient code
- Fewer bugs
- High Level Lang. & Tools
 - C/C++/SystemC
 - Synthesis
- Interoperability Stds
 - UT, LT, AT, CA
 - TLM2.0

The Architecture for the Digital World®
What is ESL?

Electronic System Level

Behavior Algorithms
Specification
Architecture Platforms
HW / SW

The ESL focus at ARM is on high level modeling to facilitate virtual platforms.
Complex designs need multiple verification & validation platforms
Virtual Platforms allow early HW / SW co-development & analysis
High Level Modeling at ARM

- ARM exploits high level modeling and virtual platforms to improve development productivity and reduce Time to Market.

- Models are provided early in product development lifecycles

- Models are utilized for:
 - Architecture & device modeling
 - Early software development
 - Early HW / SW co-validation
 - Device implementation compliance
 - Device validation support

- Models are used …
 - Within ARM
 - Supplied to silicon partners
 - Supplied to Ecosystem partners

Accelerating SoC Time to Market ...
- High performance models suitable for SW community
- Available early for SW development
- Accurate to HW for consistency
- Easy to debug enabling improved productivity
- Easy to deploy to facilitate the developer community
Architecture Modeling

- The Architecture Envelope Model (AEM) is an executable version of the ARM Architecture Reference Manual

- Catch architectural defects early
- Optimal abstraction level for debug; Fix bugs early at minimal cost/time
- Ensure consistency of Architecture spec, AEM, and validation suite
Early HW / SW co-validation

- Models are used as an early software development platform

- Early validation and debug of HW / SW interaction
- Opportunity to fix architecture before committing to implementation
- Provides platform to support Ecosystem development

Virtual Platform Model
(including memory & peripherals)

ARM Device Model
(eg Cortex-A15)

ARM Architecture Envelope Model (AEM)

SW Development
(OS porting, virtualization, power management, ...

The Architecture for the Digital World®
Device Implementation Compliance

- The AEM is used as a definitive architecture reference

- Evaluate architecture compliance of HW device implementations
- Protect validity & value of the ARM Ecosystem
Device Validation Support

- Models are used to develop SW-driven test scenarios

- Develop test scenarios before executing on target
- Known-good test scenarios ready when validation platform available
- Separate concerns; Improved debug effectiveness & productivity
ARM Fast Models

- Comprehensive model portfolio of ARM CPUs, peripherals, and complex system IP
- Models available early, even for new ARM architectures and IP
- Programmers view abstraction level
- High simulation speed (up to ~ 200 MIPS)
 - Suitable for software development
- Comprehensive debug support including ARM DS-5
- All models validated and supported by ARM
- Export to a wide range of ESL environments (SystemC/TLM2.0)
 - Enables ARM partners to create comprehensive Virtual Platforms through 3rd party EDA solutions
- Models configurable to support a range of development tasks
ARM Fast Models

- Rich model portfolio (CPUs, periph, system IP)
- Configuration canvas
- Visualization
- OS console & status
- Extensive debug & trace

Common Tool Chain – ARM DS-5
ESL Future Challenges

- Model availability & Ease of Use
 - To maximize added value, models need to be available early and with validated quality
 - Need to empower new ESL users through the provision of comprehensive platform models
 - Can formal techniques be applied more broadly to validate equivalence between ESL and implementation abstraction levels?

- Scalability
 - Need to improve simulation performance for increasingly complex platforms
 - multicore … manycore … complex system solutions

- Standardization
 - Need to avoid proliferation of modeling abstraction levels
 - Need standardization for the characterization and instrumentation of performance and power modeling
Conclusions

- ESL can be used effectively to complement implementation focused verification & validation platforms
- ESL is particularly compelling in the domain of systems and architectures, and offers unique value in the early phases of product development.
- ARM exploits high level modeling to improve productivity and reduce Time to Market, and as part of a holistic verification & validation strategy.
- Within the verification context, models are used to …
 - Confirm integrity of architecture specifications
 - Facilitate early HW / SW co-validation and debug
 - Evaluate architecture compliance of device implementations
 - Development and debug complex test scenarios for device validation
- ARM delivers and supports high level models through the ARM Fast Models product.

For more information …. www.arm.com