Verification Futures: The Next 5 Years

Bryan Dickman
Director Design Assurance, PD
15/11/11
1. Complexity

- We all agree on the importance of verification, but....
 - 50% of the problem is in how to create designs that work?
- Spaghetti code lives forever...
- Avoid bugs at design capture
- “correct-by-construction”
- Apply design practices to DFV and PPA
- Can design abstraction/ESL help?
- Can formal help?
2. Scalability

- Constrained-random simulation has been proven as a good bug-hunting flow, but...
 - How much simulation will be enough for a 10 GHz CPU?
 - How many cycles to verify 2 weeks at target speed of 1GHz?
 - Answer: 0.6×10^{15}

<table>
<thead>
<tr>
<th>Simulation (KHz)</th>
<th>Emulation (1 MHz)</th>
<th>FPGA (10 MHz)</th>
<th>Si (1 GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target cycles 10^{15}</td>
<td>1,000,000 sim slots</td>
<td>1000 emulation slots</td>
<td>100 FPGA slots</td>
</tr>
<tr>
<td>Achievable cycles</td>
<td>10^{11}</td>
<td>10^{12}</td>
<td>10^{14}</td>
</tr>
</tbody>
</table>

- How will we scale simulation, emulation, FPGA to next gen of CPUs?
- What are the alternatives?
3. Completeness

- Coverage is a great tool to demonstrate that we have done what we said we would do, but...
 - How do we know that we are done? ($64MB question)
 - How many undiscovered bugs are there?
 - (known-knowns, known-unknowns, unknown-unknowns)
 - (coverage hit, coverage holes, coverage model completeness)
 - Does coverage mean correctness?
- What other measures do we have?
 - Cycles, bug curves
- Again, does formal help?