Requirements Engineering – the future in verification

Darren Galpin - System IP verification manager
Serrie-justine Chapman - Requirements Traceability Manager
What is requirements Engineering?
The Drive for Requirements Engineering and where it’s driving us ...

Tipping Point

- New Safety Standards such as the ISO26262 (SIL)

- Quality and completeness
- Identification of requirements & dependencies
- Need to add linkage to legacy documents
- Are the requirements feasible?
- Over & under engineering
- Identify issues in flow
Current standards drive for formal methods such as UML to document top level Safety Requirements

Possible that this will pass into testbench documentation in the future

Better to have more live than dead documents, as it is easy and quick to update and maintain for documentation purposes rather than leave to the end.

Could allow round robin to assist with maintenance and handovers – change UML, see what needs to be changed in testbench, or load in testbench and visualise.

Would also help identify dead verification code, from code which is not executed to code which is not covering a requirement.

Test plans could become UML use cases.
UML – The Problems and Solutions

- UML is designed for object oriented languages and software systems, so does not map cleanly to aspect oriented languages or hardware.

- Theme/UML is an extension to UML pioneered by Trinity College Dublin to handle aspects, specifically AspectJ.

- This fits better, but is still not enough for complex verification environments written in e.

- Constraints can be handled by OCL – Object Constraint Language, a UML extension.

- Extend UML by using Modelling and Analysis of Real Time and Embedded systems (MARTE) to handle time concepts.

- Extend MARTE and OCL to use Theme/UML cross-cutting aspects to allow extensions and over-rides.

- Prototype developed supporting this by Trinity College Dublin, no commercial support yet.
How to ‘prove’ the requirement is implemented

Options:

- Link to HDL
 - Proves that some code is in place
 - Does not prove that it necessarily covers the function in question
 - Allows quick support of any change requests
 - Would need somehow still to ensure that the HDL is being checked and is working – 100% coverage but is there a checker?

- Link to tests
 - Ensures we have a test/PSL/Coverage point intent to implement a testplan
 - Does not prove implementation, would need further linkage

- Link to pass fail criteria
 - Proves a check/test/psl/proof has been written to test the function
 - Prove that that has been exercised and passing
Problem?

- Link testplan to the proof of implementation
- For random and PSL
 - Is a check there & where
 - Did we test the check and is it passing
- Currently we only look to 100% of coverage. What if the code is missing?
- Audit trail
- Link crossways – pre-silicon, post silicon. Common format independent of methodology
Summary

- Improvements are necessary to fulfil standards
- UML can improve documentation in all areas
- Closer documentation to verification ensures likelihood of keeping it current
- Improvement of interaction between methodologies
ENERGY EFFICIENCY
MOBILITY
SECURITY

Innovative semiconductor solutions for energy efficiency, mobility and security.