Requirements-driven Verification Methodology
for Standards Compliance

Serrie-justine Chapman (TVS) serrie@testandverification.com
Mike Bartley (TVS) mike@testandverification.com
Darren Galpin (Infineon)
Agenda

• Motivation
 – Why Requirements Driven Verification?
• Introduction to Safety
 – The Safety Standards
 – What do we need to do? And deliver?
• Supporting Requirements Driven Verification with Advanced Verification Techniques
• Tool Support
• Advantages of Requirements Driven Verification
An Overview of Verification Approaches

- Metric Driven Verification
- Directed Testing
- Coverage Driven Verification
- Feature Driven Verification

• Constrained random verification
• Assertion-based verification.
• Formal property based verification.
Why Requirements Driven Verification?

• Metric Driven Verification
 – Allows us to define targets
 – And monitor progress

• Coverage Driven Verification
 – Most common metric driven verification approach
 – Code Coverage
 – Functional coverage
 – Might be related to features

• Feature Driven Verification
 – Features MIGHT be related to spec
 – Is that relationship captured?
 – Are features related to requirements?
Safety Standards

- **IEC61508**: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
- **DO254/DO178**: Hardware/Software considerations in airborne systems and equipment certification
- **EN50128**: Software for railway control and protection systems
- **IEC60880**: Software aspects for computer-based systems performing category A functions
- **IEC62304**: Medical device software -- Software life cycle processes
- **ISO26262**: Road vehicles – Functional safety
Introduction to Safety

• The life cycle processes are identified
• Objectives and outputs for each process are described
 – Objectives are mandatory
 – But vary by Integrity Level
 – For higher Integrity Levels, some Objectives require Independence
Key Elements

- Plans & Standards
- Requirements
- Design Specifications
- Reviews and Analyses
- Testing (against specifications)
 - At different levels of hierarchy
- Test Coverage Criteria
- Requirements Traceability
- Independence
Key Deliverables

- Hardware Verification Plan
- Validation and Verification Standards
- **Hardware Traceability Data**
- Hardware Review and Analysis Procedures
- Hardware Review and Analysis Results
- Hardware Test Procedures
- Hardware Test Results
- Hardware Acceptance Test Criteria
- Problem Reports
- Hardware Configuration Management Records
- Hardware Process Assurance Records
REQUIREMENTS ENGINEERING DEFINITIONS

Requirement:

1. A condition or capability needed by a user to solve a problem or achieve an objective

2. A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification or other formally imposed documents

3. A documented representation of a condition or capability as in (1) or (2)

[IEEE Std.610.12-1990]

Stakeholder:

• A stakeholder of a system is a person or an organization that has an (direct or indirect) influence on the requirements of the system

* All Definitions taken from IREB
REQUIREMENTS ENGINEERING CORE ACTIVITIES

Requirements Engineering is a systematic and disciplined approach to the specification and management of requirements with the following goals:

– Knowing the relevant requirements, achieving a consensus among the Stakeholders about these requirements, documenting them according to given standards, and managing them systematically
– Understanding and documenting the stakeholders’ desires and needs, then specifying and managing requirements to minimize the risk of delivering a system that does not meet the stakeholders’ desires and needs

Four core activities:
• Elicitation
• Documentation
• Validation and negotiation
• Management
Requirements Traceability

• Documented:
 – all integrity levels/classes

• All requirements:
 – Tested or otherwise verified (Audit trail)

“Requirements Traceability = the ability to follow the life of a requirement, in both a backward and forward direction”
Supporting Advanced Verification

• Constrained random verification with automated checks based on models or scoreboards, etc.
• Coverage driven verification based on functional coverage models and code coverage metrics.
• Assertion-based verification.
• Formal property based verification.
Supporting Advanced Verification

- **Feature Level Requirements** (Top Level Test Plan)
 - **Req1**
 - **Req1.1**
 - **Req1.2**

- **Refined Requirements** (Sub-Features)
 - **Req1.1**
 - **Req1.2**

- **Refined Requirements** (Sub-Features and Goals)
 - **Req1.1.1**
 - **Req1.1.2**
 - **Req1.2.1**

- **Measureable Goals**
 - **Goal 1.1.1.1**
 - **Goal 1.1.1.2**
 - **Goal 1.2.1.1**
 - **Goal 1.2.2**

- **Metrics** (Coverage or Tests)
 - **Coverage 1.1.1.1.1**
 - **Coverage 1.1.1.2.1**
 - **Coverage 1.1.2.1.1**
 - **Test 1.2.1.1.1**
 - **Test 1.2.2.1**
Tracking Metrics can be:

- From HW verification
- From Silicon validation
- From SW testing

Metrics can be:

- From HW verification
- From Silicon validation
- From SW testing
Track Progress on Requirements Signoff
Supporting Hierarchical Verification

• A requirement might be signed off at multiple levels of hierarchy during the hardware development
 – Block
 – Subsystem
 – SoC
 – System
 – Including Software
 – Post Silicon
Tool Support Requirements

- Requirements -> test plan
- Data Integrity, hierarchy, data translation
- Change management – instant update
- Live database -> easy documentation
- Tailored Documented proof
- Allows reviews of implementation document against test plan
- Mapping
- Test management
- Compliance / Audit Management
asureSIGN Dataflow

REQUIREMENT ENTRY (AND/OR)
- Change Management Tool
- Requirements Database
 - Funct
 - Verif

REQUIREMENT MAPPING
- Quality Gateway
- asureSIGN™
- XML

REQUIREMENT PROOFS
- asureSIGN™ & ARQE XML
- PDF Report
Advantages of Requirements Driven Verif

- Requirements Management
- Verification Management
- Project Management
- Impact Analysis
- Product Line Engineering
- Variant management
- Improved Product Sign-Off
Conclusions #1

• Requirements Driven Verification
 – Compliance to various hardware (and software) safety standards
 • IEC61508: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
 • DO254/DO178: Hardware/Software considerations in airborne systems and equipment certification
 • EN50128: Software for railway control and protection systems
 • IEC60880: Software aspects for computer-based systems performing category A functions
 • IEC62304: Medical device software -- Software life cycle processes
 • ISO26262: Road vehicles – Functional safety
 – There are several other advantages
 • Identify test holes and test orphans
 • Track the status of the whole verification effort (planning, writing, execution)
 • Build historical perspective for more accurate predictions
 • Better reporting of requirements status
 • Support for
 – Risk-based testing
 – Prioritisation and Risk Analysis
 – Filtering Requirements based on Customers and releases
 – Impact analysis
Conclusions #2

• Advanced verification techniques can be deployed in Requirements Driven Verification
 – Requirements engineering tools to capture the verification plan & mapping
 – Verification management tools to automate collection of results

• More info
 – CRYSTAL http://www.crystal-artemis.eu/
Questions