ARM Webinar series

ARM Based SoC Verification

Abey Thomas
Agenda

• About ARM and ARM IP
• ARM based SoC Verification challenges
• Verification planning and strategy
• IP Connectivity verification
• Performance verification
• Low power verification
• Clock domain crossing verification
• H/W-S/W co-verification concepts
• Tracking verification maturity
• Tape out readiness guidelines
• Q&A session
About ARM and ARM IP

• Joint venture started in 1990
 • Acorn Computers, Apple, and VLSI Technology
• Cambridge, UK based
 • Design centres in Cambridge, Austin, Bangalore and Sophia Antipolis
• Popular range of products
 • RISC processor cores for portable devices and mobile phones
 • Peripheral and fabric IP products
 • Software tools, models products
 • AMBADesigner, RVDS etc
Classic processor offerings

• ARM7
 • More than 10 billion devices sold
 • Used in simple microcontroller devices

• ARM9
 • Advanced microcontrollers and industrial SoC
 • Low-end application processors (ARM926EJ-S)
 • DSP, Java, VFP, MMU/MPU

• ARM11
 • High-end application processors
 • SIMD, DSP, Java, VFP, Multi-core, Thumb-2, MMU/MPU
Latest processor offerings

- Cortex family
- Application profile (ARMv7-A) - A5/A7/A8/A9/A15
 - MMU for OS and multi tasking
 - Highest performance at low power
 - TrustZone and Jazelle-RCT
- Real-time profile (ARMv7-R) - R4/R5/R7
 - Protected memory (MPU)
 - Low latency and predictability
- Microcontroller profile (ARMv7-M) – M3/M4 and ARMv6-M) – M0/M1
 - Lowest gate count entry point
 - Deterministic and predictable behavior
Other IP products

- CoreLink and AMBA bus interconnect IP
 - CCI-400, ACE, NIC-400/301, PL301 etc
- Memory controllers and system controllers
 - L2 Cache Controller, DMA Controller etc
- Mali graphics processor family
 - Mali 200/400/600
- CoreSight components- IPXACT compliant
- Debug and Trace IP
 - System trace macro cell, Trace memory controller
- Peripheral IP- GPIO, UART etc
SoC Verification challenges

- High performance processors, > GHz clock
- Multiple clock domains, multi master
- Complex system IP with coherency extensions
 - Coherent interconnects, SCP, ACP etc
- Multiple low power options
 - DVFS
- IP level complexity
 - AMBA specifications support
 - IP interoperability issues
 - IP interface signals compatibility
- Power and performance verification
- Software validation prior to tape out
Verification planning and strategy

- Software based simulation - Using HVL tools or any other RTL simulator
 - Modeled using concepts in ABV, OVM, VMM, UVM, system Verilog, C, Verilog / VHDL etc.
- In-circuit Emulation - Hardware based
 - The DUT is operated with embedded software drivers and operating systems, similar to that in a real system
- FPGA Prototyping - Hardware / FPGA based
 - Maps the entire design or the strategic areas of the target SoC into an FPGA gives an accurate and fast representation
- Static formal verification – Provided by industry standard tools supporting formal verification
IP Connectivity verification

- Involves verifying the sanity of the connections between various IP’s in the ARM eco system
- Outputs and inputs of all IP and subsystem are connected to intended target recipients correctly
- All the sideband signals and the unused inputs and outputs are appropriately connected
- Chip level connectivity to pad rings are proper with TAP controller and JTAG connectivity with IO pin level multiplexing, pin level direction control etc
- Clock and reset connectivity is established.
- Top level glue logic is correctly in place and functionally tested
- Asynchronous interfaces are appropriately designed to take care of metastability issues
Performance verification

• Verifying whether the design meets (or exceeds) the product operational requirements

• Helps to determine optimal system mode configuration & Software settings for achieving functionally operational requirements

 • Dhrystone, AXI Adaptive Verification IP (AVIP) and Virtual performance exploration (VPE) approaches

 • VPE from ARM allows targeted testing with minimum development effort and allows real IP & SW to be used for complete system test and benchmarks

 • AVIP is an ARM VIP which is a unified solution for AMBA 3 AXI SoC platform architectural and functional verification

• Performance verification can happen in parallel with integration and functional testing
Low power verification

• Covers various LP technologies
 • Clock gating
 • Multi-switching (multi-Vt) threshold transistors
 • Multi-supply multi voltage (MSMV)
 • Power gating with or without state retention
 • Dynamic voltage and frequency scaling (DVFS)
 • Substrate biasing
• Power gating areas power domains or power islands verified using power aware simulations
• Power specification data of the SoC provides the low power design intent of the system
 • UPF or CPF formats
Low power verification

- Low power verification goals
 - Perform register/latch recognition from the RTL design.
 - Perform identification of power elements and their power control signals.
 - Perform shut-down and turn on the power of each IP which can be controlled according to its power-modes.
 - Shut-down and turn on system memories, with and without value retention.
 - Shut-down and turn on registers, with and without value retention.
 - Evaluate the isolation cell outputs when IP is in shutdown.
 - Ensure that the active logic is protected from the turned-off IP by the isolation cells.
Power Aware Simulations expose the following:

- Failure to retain sufficient state information.
- Dependency on output values due to failure of isolation between interfaces.
- Problems when interacting state machines in different power domains restore to states that create deadlock or live lock situations in the design.
- Improper sequencing of save and restore operations by the power management block.
- Failure to reset a block upon power-on to a known good state for non-retentive blocks.
Clock domain crossing verification

- Industry trend shows increased multi clock designs in ARM based SOC
- Varying clock frequencies for non critical IP blocks depending on performance requirement
- Some IP’s need clock rates higher than system clock rate and hence asynchronous. Ex: GPU
- CDC verification helps identify metastability issues
- Check for the presence of valid synchronizers in all asynchronous clock domain crossings and synchronous clock domain crossings
- Check for the presence of separately synchronized signals which are converging.
- Verify zero data loss and cross check special synchronizing schemes
H/W-S/W co-verification concepts

• Refers to verifying that hardware and software function correctly together
 • Pre-empts verification done with real hardware prototype
 • Software engineers have much earlier access to the SoC hardware design for S/W design and test
 • Results in additional system improvements being incorporated
 • Provides additional testing for the hardware design with the help of software infrastructure
 • EDA ISS or ARM Fast models used
 • Tools available to run complex designs, capable of exposing hidden cycles.
 • Limited visibility with memory partitions
• Bug arrival rates
 • Number of bugs identified on a definite measurable time
 • Indicates the trend of bug discovery
• Completeness of all test cases as per plan.
 • Involves periodic review and recording of testing progress
• RTL rate of change
 • RTL rate of change determines the rate at which design changes and bug fix rates evolve.
 • Declines with design maturity
• Functional and code coverage progress measured against goals
Tape out readiness guidelines

- Completion of the code coverage targets
- Completion of the functional coverage targets
- Completion of the targeted checker Coverage
- Completion of the correlation between functional coverage and checker coverage list
- Completion of review of all the exclusions and waivers
- Completion of review all known bugs, issues and waivers
- All test cases passed, with no new bugs observed in defined regression period
Questions and answers
Conclusion

Thank you